Profile likelihood methods
LikelihoodProfiler provides a range of methods to profile likelihood functions and explore practical identifiability. The method should be provided as the second argument to the profile
function.
Optimization-based profiles
The method computes profiles for each parameter by iteratively changing the value of the parameter and re-optimizing the likelihood function with respect to all other parameters.
LikelihoodProfiler.OptimizationProfiler
— TypeOptimizationProfiler{S, opType, optsType}
A profiler method that uses stepwise re-optimization to profile the likelihood function.
Fields
stepper::S
: The algorithm used to compute the next profile point.optimizer::opType
: The optimizer used for the optimization process.optimizer_opts::optsType
: Options for the optimizer. Defaults toNamedTuple()
.
Example
using Optimization
profiler = OptimizationProfiler(; optimizer = Optimization.LBFGS(), optimizer_opts = (reltol=1e-4,), stepper = FixedStep())
Integration-based profiles
The method computes profiles for each parameter by integrating the differential equations system.
LikelihoodProfiler.IntegrationProfiler
— TypeIntegrationProfiler{opType, optsType, DEAlg, DEOpts}
A profiler method that uses integration of differential equations system to profile the likelihood function.
Fields
reoptimize::Bool
: Indicates whether to re-optimization after each step of theintegrator
. Defaults tofalse
.optimizer::opType
: The optimizer used for the optimization process. Defaults tonothing
.optimizer_opts::optsType
: Options for the optimizer. Defaults toNamedTuple()
.integrator::DEAlg
: The differential equation algorithm used for integration.integrator_opts::DEOpts
: Options for the differential equation solver. Defaults toNamedTuple()
.matrix_type::Symbol
: The type of matrix to be used for the Hessian approximation. Possible options are::hessian
,:identity
. Defaults to:hessian
.gamma::Float64
: Correction factor used in integration if full hessian is not computed (e.g.matrix_type = :identity
). Defaults to1.0
.
Example
using OrdinaryDiffEq
profiler = IntegrationProfiler(integrator = Tsit5(), integrator_opts = (dtmax=0.3,), matrix_type = :hessian)
References:
- Chen, J.-S. & Jennrich, R. I. Simple Accurate Approximation of Likelihood Profiles. Journal of Computational and Graphical Statistics 11, 714–732 (2002).
- Chen, J.-S. & Jennrich, R. I. The Signed Root Deviance Profile and Confidence Intervals in Maximum Likelihood Analysis. Journal of the American Statistical Association 91, 993–998 (1996).
Confidence Intervals by Constrained Optimization (CICO)
The method computes intersections (endpoints of the confidence interval (CI)) of the profile with the predefined confidence level (threshold
) without restoring the exact trajectory of the profile. Requires using CICOBase package.
LikelihoodProfiler.CICOProfiler
— TypeCICOProfiler
Confidence Intervals by Constrained Optimization (CICO) method to find the intersections of the likelihood function with the threshold. See CICOBase docs for more details. Requires using CICOBase
.
Fields
optimizer::Symbol
: The optimizer used for the optimization process. Defaults to NLopt:LN_NELDERMEAD
.scan_tol::Float64
: The tolerance for the endpoints scan. Defaults to1e-3
.
Example
profiler = CICOProfiler(optimizer = :LN_NELDERMEAD, scan_tol = 1e-3)
References:
- Borisov, I. & Metelkin, E. Confidence intervals by constrained optimization—An algorithm and software package for practical identifiability analysis in systems biology. PLoS Comput Biol 16, e1008495 (2020).
- Venzon, D. J. & Moolgavkar, S. H. A Method for Computing Profile-Likelihood-Based Confidence Intervals. Applied Statistics 37, 87 (1988).